Multishift Variants of the QZ Algorithm with Aggressive Early Deflation

نویسندگان

  • Bo Kågström
  • Daniel Kressner
چکیده

Abstract. New variants of the QZ algorithm for solving the generalized eigenvalue problem are proposed. An extension of the small-bulge multishift QR algorithm is developed, which chases chains of many small bulges instead of only one bulge in each QZ iteration. This allows the effective use of level 3 BLAS operations, which in turn can provide efficient utilization of high performance computing systems with deep memory hierarchies. Moreover, an extension of the aggressive early deflation strategy is proposed, which can identify and deflate converged eigenvalues long before classic deflation strategies would. Consequently, the number of overall QZ iterations needed until convergence is considerably reduced. As a third ingredient, we reconsider the deflation of infinite eigenvalues and present a new deflation algorithm, which is particularly effective in the presence of a large number of infinite eigenvalues. Combining all these developments, our implementation significantly improves existing implementations of the QZ algorithm. This is demonstrated by numerical experiments with random matrix pairs as well as with matrix pairs arising from various applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Multishift QZ Algorithm with Aggressive Early Deflation

Recent improvements to the QZ algorithm for solving generalized eigenvalue problems are summarized. Among the major modifications are novel multishift QZ iterations based on chasing chains of tiny bulges and an extension of the so called aggressive early deflation strategy. The former modification aims to improve the execution time of the QZ algorithm on modern computing systems without changin...

متن کامل

A Parallel QZ Algorithm for Distributed Memory HPC Systems

Appearing frequently in applications, generalized eigenvalue problems represent one of the core problems in numerical linear algebra. The QZ algorithm by Moler and Stewart is the most widely used algorithm for addressing such problems. Despite its importance, little attention has been paid to the parallelization of the QZ algorithm. The purpose of this work is to fill this gap. We propose a par...

متن کامل

Parallel Variants of the Multishift QZ Algorithm with Advanced Deflation Techniques

The QZ algorithm reduces a regular matrix pair to generalized Schur form, which can be used to address the generalized eigenvalue problem. This paper summarizes recent work on improving the performance of the QZ algorithm on serial machines and work in progress on a novel parallel implementation. In both cases, the QZ iterations are based on chasing chains of tiny bulges. This allows to formula...

متن کامل

The Multishift QR Algorithm. Part II: Aggressive Early Deflation

Aggressive early deflation is a QR algorithm deflation strategy that takes advantage of matrix perturbations outside of the subdiagonal entries of the Hessenberg QR iterate. It identifies and deflates converged eigenvalues long before the classic small-subdiagonal strategy would. The new deflation strategy enhances the performance of conventional large-bulge multishift QR algorithms, but it is ...

متن کامل

Parallel library software for the multishift QR algorithm with aggressive early deflation

Library software implementing a parallel small-bulge multishift QR algorithm with aggressive early deflation (AED) targeting distributed memory high-performance computing systems is presented. Starting from recent developments of the parallel multishift QR algorithm [Granat et al., SIAM J. Sci. Comput. 32(4), 2010], we describe a number of algorithmic and implementation improvements. These incl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2006